UNIFORM HARMONIC APPROXIMATION OF BOUNDED FUNCTIONS

STEPHEN J. GARDINER

ABSTRACT. Let Ω be an open set in \mathbb{R}^n and E be a relatively closed subset of Ω . We characterize those pairs (Ω, E) which have the following property: every function which is bounded and continuous on E and harmonic on E^0 can be uniformly approximated by functions harmonic on Ω . Several related results concerning both harmonic and superharmonic approximation are also established.

1. Introduction and results

Let Ω be an open set in \mathbb{C} , let Ω^* denote its Alexandroff (one point) compactification, and let $\operatorname{Hol}(\Omega)$ denote the collection of holomorphic functions on Ω . Further, let E be a relatively closed subset of Ω and let C(E) denote the collection of continuous complex-valued functions on E.

Theorem A. The following are equivalent:

- (a) for each f in $C(E) \cap \operatorname{Hol}(E^0)$ and each positive number ε there exists g in $\operatorname{Hol}(\Omega)$ such that $|g f| < \varepsilon$ on E;
- (b) for each bounded function f in $C(E) \cap \operatorname{Hol}(E^0)$ and each positive number ε there exists g in $\operatorname{Hol}(\Omega)$ such that $|g f| < \varepsilon$ on E;
- (c) $\Omega^* \setminus E$ is connected and locally connected.

The equivalence of (a) and (c) in Theorem A is the celebrated theorem of Arakelyan (see [1] or [2]). The addition of condition (b) here is due to Stray [16, Theorem 1]. Stray [17, p. 359] subsequently asked whether conditions (a) and (b) of Theorem A remain equivalent when "holomorphic" is replaced by "harmonic" throughout.

The harmonic analogue of Arakelyan's theorem was recently established by the author in [8]: see Theorem B below. One of the results of the present paper (Theorem 2 below) identifies which sets E have the harmonic analogue of property (b) in Theorem A and, in so doing, gives a negative answer to Stray's question in all dimensions. When n=2 it simplifies to a result of Nersesyan [15]. However, the general characterization is more delicate, and new arguments are required to deal with higher dimensions.

From now on Ω denotes an open set in Euclidean space \mathbb{R}^n $(n \geq 2)$ and E is a relatively closed subset of Ω . If $A \subseteq \mathbb{R}^n$, then C(A) denotes the collection of real-valued continuous functions on A, and $\mathcal{H}(A)$ (resp. $\mathcal{S}(A)$) is the class of functions which are harmonic (resp. superharmonic) on some open set which contains A. We

Received by the editors January 11, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B05; Secondary 41A30.

say that A is Ω -bounded if \overline{A} is a compact subset of Ω , and denote by \widehat{E} the union of E with the Ω -bounded (connected) components of $\Omega \backslash E$. The harmonic analogue of Arakelyan's theorem is as follows. The reader is referred to [8, Theorem 5] for this result, or to [9] for a general exposition of the results in this area. An account of thin sets and the fine topology may be found in Doob [6, 1.XI] or Helms [13, Chapter 10].

Theorem B. Let Ω be an open set in \mathbb{R}^n and E be a relatively closed subset of Ω . The following are equivalent:

- (a) for each u in $C(E) \cap \mathcal{H}(E^0)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (b) (i) $\Omega \setminus \widehat{E}$ and $\Omega \setminus E^0$ are thin at the same points of E, and
 - (ii) for each compact subset K of Ω there is a compact subset L of Ω which contains every Ω -bounded component of $\Omega \setminus (E \cup K)$ whose closure intersects K.

It will become clear from the results below that, if we require the function u in (a) above to be bounded, then condition (b) can be significantly relaxed; that is, approximation is possible on a larger class of sets E.

Let $\Omega^* = \Omega \cup \{\mathcal{A}\}$, where \mathcal{A} denotes the Alexandroff point for Ω . If ω is a connected open subset of Ω , then \mathcal{A} is said to be accessible from ω if there is a continuous function $f:[0,+\infty)\to\omega$ such that $f(t)\to\mathcal{A}$ as $t\to+\infty$. We denote by \widetilde{E} (or, sometimes, by $(E)^{\sim}$) the union of E with the components of $\Omega\backslash E$ from which \mathcal{A} is not accessible. Clearly $\widehat{E}\subseteq\widetilde{E}$, but this inclusion may be strict: see Example 1 below. Our main results on approximation of bounded functions are as follows.

Theorem 1. Let Ω be an open set in \mathbb{R}^n and E be a relatively closed subset of Ω . The following are equivalent:

- (a) for each bounded function u in $\mathcal{H}(E)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (b) for each bounded function u in S(E) and each positive number ε there exists ν in $S(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (c) (i) $\Omega \setminus E$ and $\Omega \setminus E$ are thin at the same points of E, and
 - (ii) for each compact subset K of Ω there is a compact subset L of Ω such that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash (\widetilde{E} \cup K)^{\sim}$ are thin at the same points of $E \backslash L$.

Theorem 2. Let Ω be an open set in \mathbb{R}^n and E be a relatively closed subset of Ω . The following are equivalent:

- (a) for each bounded function u in $C(E) \cap \mathcal{H}(E^0)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (b) for each bounded function u in $C(E) \cap \mathcal{S}(E^0)$ and each positive number ε there exists ν in $C(\Omega) \cap \mathcal{S}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (c) (i) $\Omega \setminus \widetilde{E}$ and $\Omega \setminus E^0$ are thin at the same points of E, and
 - (ii) for each compact subset K of Ω there is a compact subset L of Ω such that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash (\widetilde{E} \cup K)^{\sim}$ are thin at the same points of $E \backslash L$.

The proof of Theorem 1 (resp. Theorem 2) actually yields a little more: if (c) holds, then any function in $\mathcal{H}(E)$ (resp. in $C(E) \cap \mathcal{H}(E^0)$) which is bounded on $\partial E \cap \Omega$ can be uniformly approximated on E by functions in $\mathcal{H}(\Omega)$.

When n = 2 Theorems 1 and 2 simplify to the following slight reformulation of a result of Nersesyan [15].

Corollary 1. Let Ω be an open set in \mathbb{R}^2 and E be a relatively closed subset of Ω . The following are equivalent:

- (a) for each bounded function u in $C(E) \cap \mathcal{H}(E^0)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (b) for each bounded function u in $\mathcal{H}(E)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that $|\nu u| < \varepsilon$ on E;
- (c) (i) $\partial E = \partial E$, and
 - (ii) for each compact subset K of Ω there is a compact subset L of Ω such that $\partial \widetilde{E} \backslash L = \partial ((\widetilde{E} \cup K)^{\sim}) \backslash L$.

The thinness conditions in Theorems 1 and 2 are new, but similar in spirit to those in [8]. That paper contains some illustrative examples which are relevant also in the present context. Below we illustrate condition (c) of Corollary 1 by some further examples.

Example 1. Let $\Omega = \mathbb{R}^2$, and for each m in \mathbb{N} let W_m denote the open rectangle $((m+1)^{-1}, m^{-1}) \times (0, m)$. We define

$$E_1 = \partial \left(\left(\bigcup_{m=1}^{\infty} W_m \right) \cup (0,1)^2 \right), \quad E_2 = \partial \left(\left(\bigcup_{m=1}^{\infty} W_{2m} \right) \cup (0,1)^2 \right),$$

and $E_3 = E_2 \cup \{(1/2, 1/2)\}$. Then $\mathbb{R}^2 \setminus E_k$ (k = 1, 2, 3) consists of two components, and the point at infinity is not accessible from the component which contains the point (1/4, 1/4). Clearly $\partial \widetilde{E}_2 = \partial E_2$, but $\partial \widetilde{E}_1 \neq \partial E_1$ and $\partial \widetilde{E}_3 \neq \partial E_3$.

Example 2. Let $\Omega = \mathbb{R}^2$, let W_m be as in Example 1, and let

$$F_1 = \partial \left(\left(\bigcup_{m=1}^{\infty} W_m \right) \cup (-\infty, 1)^2 \right), \quad F_2 = \partial \left(\left(\bigcup_{m=1}^{\infty} W_{2m} \right) \cup (-\infty, 1)^2 \right),$$
$$F_3 = F_2 \cup \left\{ \left(\frac{4m+1}{4m(2m+1)}, m \right) \in \mathbb{R}^2 : m \in \mathbb{N} \right\}.$$

Then condition (c)(ii) of Corollary 1 is satisfied when $E = F_2$. However, it is not satisfied when $E = F_1$ or $E = F_3$, as can be seen by taking K to be $[0,1] \times \{1\}$.

It is now easy to see that condition (c) of Corollary 1 is satisfied when $E = E_2$ and when $E = F_2$ in \mathbb{R}^2 . However, this is not true of condition (b) in Theorem B. This provides the promised negative answer to the question of Stray recorded above when n = 2, and a simple modification of this example gives a counterexample also in higher dimensions, in the light of Theorems B and 2 and of Lemmas 1 and 2 below

The proofs of Theorems 1 and 2 rely in part on results and techniques of Gauthier, Goldstein and Ow [11], [12], Labrèche [14] and the author [8]. In particular, they implicitly rely on fusion results for harmonic and superharmonic functions. Theorem 1 is proved in §§2–4. Theorem 2 and Corollary 1 are then derived in §5. In §6 we indicate refinements of Theorems 1 and 2 in which better than uniform approximation of bounded functions is achieved.

2. Proof of Theorem 1 (c)
$$\Rightarrow$$
 (b)

- 2.1. In this section we collect together some preliminary observations associated with condition (c) of Theorem 1.
- **Lemma 1.** Suppose that K and L are compact subsets of Ω such that $K \subseteq L$ and such that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash (\widetilde{E} \cup K)^{\sim}$ are thin at the same points of $E \backslash L$. Let W denote the union of the components of $\Omega \backslash (\widetilde{E} \cup K)$ from which A is not accessible. If $W \neq \emptyset$, then:
 - (i) each point of $(\partial W \cap \Omega) \setminus L$ is regular for the Dirichlet problem on W, and
 - (ii) $(\partial W \cap \Omega) \setminus L \subseteq \partial((\widetilde{E} \cup K)^{\sim}).$

To prove (i), suppose that z is a point of $(\partial W \cap \Omega) \setminus L$ which is irregular for the Dirichlet problem on W. Then $\Omega \setminus W$, and hence also $\Omega \setminus (\widetilde{E} \cup K)^{\sim}$, is thin at z. However, $\Omega \setminus \widetilde{E}$ contains W, and so is nonthin at z. Clearly

$$\partial W \cap \Omega \subseteq (\partial \widetilde{E} \cap \Omega) \cup \partial K \subseteq E \cup \partial K$$
,

so $z \in E \setminus L$. This contradicts our hypothesis, and thus (i) must hold.

To prove (ii), let $A = (\partial W \cap \Omega) \setminus (L \cup \partial ((\widetilde{E} \cup K)^{\sim}))$. Then

$$A \subseteq (\partial(\widetilde{E} \cup K) \cap \Omega) \setminus \partial((\widetilde{E} \cup K)^{\sim}) \subseteq ((\widetilde{E} \cup K)^{\sim})^{0},$$

so $\Omega \setminus (\widetilde{E} \cup K)^{\sim}$ is certainly thin at each point of A. Also,

$$A \subseteq (\partial(\widetilde{E} \cup K) \cap \Omega) \backslash L \subseteq E \backslash L,$$

so $\Omega \backslash \widetilde{E}$ is thin at each point of A, by hypothesis. Hence W is also thin at each point of A. Thus A is a relatively open subset of ∂W which has zero harmonic measure for each component of W (see [6, 1.XI,13]). Each point of A is therefore irregular for the Dirichlet problem on W. Since $A \subseteq (\partial W \cap \Omega) \backslash L$, it follows from (i) that $A = \emptyset$. Hence (ii) holds, and the lemma is proved.

Lemma 2. Suppose that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash E$ are thin at the same points of E and let $W = \widetilde{E} \backslash E$. If $W \neq \emptyset$, then:

- (i) each point of $\partial W \cap \Omega$ is regular for the Dirichlet problem on W, and
- (ii) $\partial W \cap \Omega \subseteq \partial E$.

The proof of Lemma 2 is similar to that of Lemma 1, so we omit the details.

Let $\partial^{\infty} A$ denote the boundary of a set A in $\mathbb{R}^n \cup \{\infty\}$. If W is as in Lemma 2, then each point y of $\partial^{\infty} W \cap \partial^{\infty} \Omega$ is regular for the Dirichlet problem on W. To see this, we note that, if y were an irregular boundary point of W, then $\mathbb{R}^n \setminus W$ would be thin at y, and it follows that almost all rays emanating from y lie initially in $W \cup \{y\}$. This is impossible, in view of the definition of W.

Theorem C. Let ω be a connected open subset of Ω from which \mathcal{A} is not accessible. If s is a subharmonic function on ω and

$$\limsup_{x \to y} s(x) \le a \qquad (y \in \partial \omega \cap \Omega),$$

then $s \leq a$ on ω .

Theorem C is implied by a result of Fuglede [7, §4]; an elementary proof may be found in [5].

We will use H_f^U to denote the Perron-Wiener-Brelot solution (when it is defined) of the Dirichlet problem on an open set U with boundary function f defined on $\partial^{\infty}U$.

2.2. In the next two lemmas we show that, if condition (c)(i) of Theorem 1 holds, then bounded functions in $\mathcal{S}(E)$ can be uniformly approximated on E by functions in $\mathcal{S}(\widetilde{E})$.

Lemma 3. Suppose that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash E$ are thin at the same points of E and let $W = \widetilde{E} \backslash E$. Further, let F be a relatively closed subset of Ω such that $F \subseteq W$ and F is nonthin at each of its points. Then, for each positive number ε , there is a nonnegative continuous superharmonic function w, on an open set ω which contains \widetilde{E} , such that $w \in \mathcal{H}(\omega \backslash F)$ and w = 1 on F and $w \leq \varepsilon$ on E.

In proving Lemma 3 we may assume that $F \neq \emptyset$, for otherwise we can choose w to be the zero function. Let $\Omega_0 = \Omega \backslash F$. In this proof \widehat{R}_s^A will denote the regularized reduced function (balayage) of a nonnegative superharmonic function s on Ω_0 relative to a subset A of Ω_0 .

Let $\varepsilon \in (0,1)$ and let (K_m) be a sequence of compact subsets of Ω such that $K_m \subset K_{m+1}^0$ for each m and $\bigcup_m K_m = \Omega$. Further, let

$$L(m,k) = \{x \in \Omega \setminus K_m^0 : \operatorname{dist}(x,\widetilde{E}) \ge k^{-1}\}$$
 $(m,k \in \mathbb{N}),$

where dist(x, A) denotes the Euclidean distance from a point x to a set A. Then

$$\widehat{R}_1^{L(m,k)}(x) \uparrow \widehat{R}_1^{\Omega \setminus (\widetilde{E} \cup K_m^0)}(x) \qquad (x \in \Omega_0; m \in \mathbb{N}; k \to \infty).$$

We temporarily fix m in \mathbb{N} . Let $s_m(x)$ denote the above limit and let $D = (\partial W \cap \Omega) \backslash K_m$. Then $s_m = 1$ at points of D where $\Omega \backslash \widetilde{E}$ is nonthin. Let S denote the complementary set of points of D. Since $\Omega \backslash \widetilde{E}$ is thin at points of S, so also is $\Omega_0 \backslash E$, in view of the hypothesis and the fact that $\partial W \cap \Omega \subseteq E$. Hence the smaller set $W \backslash F$ is thin at points of S, and so S carries zero harmonic measure for $W \backslash F$. Let χ_A denote the characteristic function valued 1 on a set A and 0 elsewhere in $\mathbb{R}^n \cup \{\infty\}$. Then

$$s_m(x) \ge H_{\chi_{D} \setminus S}^{W \setminus F}(x) = H_{\chi_D}^{W \setminus F}(x) \qquad (x \in W \setminus F).$$

Let

$$V_m = \{ x \in W \setminus (K_{m+1} \cup F) : s_m(x) < 1 - \varepsilon/2 \} \cup (F \setminus K_{m+1}).$$

Then V_m is an open set such that $\overline{V}_m \cap \Omega \subset W$ in view of Lemma 2(i). Clearly $s_m \geq 1 - \varepsilon/2$ on $W \setminus (K_{m+1} \cup V_m)$.

Similarly we define

$$L(0,k) = \{ x \in \Omega : \operatorname{dist}(x, \widetilde{E}) \ge k^{-1} \} \qquad (k \in \mathbb{N}),$$

 $s_0 = \widehat{R}_1^{\Omega \setminus \widetilde{E}}$, and

$$V_0 = \{ x \in W \backslash F : s_0(x) < 1 - \varepsilon/2 \} \cup F.$$

Let

$$V = \bigcup_{m=0}^{\infty} V_m.$$

Then V is an open set which contains F and which satisfies $\overline{V} \cap \Omega \subseteq W$. It follows from Dini's theorem that there exists k_0 in \mathbb{N} such that

(1)
$$\widehat{R}_1^{L(0,k_0)}(x) \ge 1 - \varepsilon \qquad (x \in \partial V \cap K_3).$$

Similarly, for each m in \mathbb{N} , we can choose k_m in \mathbb{N} such that

(2)
$$\widehat{R}_1^{L(m,k_m)}(x) \ge 1 - \varepsilon \qquad (x \in \partial V \cap (K_{m+3} \setminus K_{m+2}^0); m \in \mathbb{N}).$$

Now let

$$L = \bigcup_{m=0}^{\infty} L(m, k_m),$$

let $\omega = \Omega \backslash L$ and

$$w(x) = \begin{cases} H_{\chi_{\partial F \cap \Omega}}^{\Omega \setminus (F \cup L)}(x) & (x \in \Omega \setminus (F \cup L)), \\ 1 & (x \in F). \end{cases}$$

Thus ω is an open set which contains \widetilde{E} , and w is a nonnegative continuous superharmonic function on ω . (It is continuous at points of $\partial F \cap \Omega$ by the nonthinness of F at such points.) Clearly $w \in \mathcal{H}(\omega \backslash F)$. Since $w \leq 1 - \widehat{R}_1^L$ on $\Omega \backslash (F \cup L)$, it follows from (1) and (2) that $w \leq \varepsilon$ on $\partial V \cap \Omega$. Hence, by the maximum principle, we see that $w \leq \varepsilon$ on $\omega \backslash V$ and so on all of E.

This completes the proof of Lemma 3.

Lemma 4. Suppose that $\Omega\backslash\widetilde{E}$ and $\Omega\backslash E$ are thin at the same points of E, let u be a bounded function in S(E) and let $\varepsilon > 0$. Then there exists a bounded function ν in $S(\widetilde{E})$ such that $|\nu - u| < \varepsilon$ on E. Further, if u is continuous, then it can be arranged that ν is also continuous.

To see this, let Ω, E, u and ε be as in the first sentence of the lemma. (We may assume that $\varepsilon < 1$.) Then there is an open set V such that $E \subseteq V$ and $u \in \mathcal{S}(V)$, and a positive number a such that |u| < a on V. If $\widetilde{E} \subseteq V$, then there is nothing to prove. Otherwise, let $W = \widetilde{E} \setminus E$ and let F be a relatively closed subset of Ω such that $F \subseteq W$ and $W \subseteq V \cup F^0$, and such that F is nonthin at each of its points.

It follows from Lemma 3 that there is a nonnegative continuous superharmonic function w, on an open set ω which contains \widetilde{E} , such that $w \in \mathcal{H}(\omega \backslash F)$ and w = 1 on F and $w < \varepsilon/(2a+1)$ on E. We now define

$$\nu_1(x) = \begin{cases} u(x) & (x \in V \backslash W), \\ \min\{u(x), a + 1 - (2a + 1)w(x)\} & (x \in W \backslash F), \\ -a & (x \in F). \end{cases}$$

Since

$$a+1-(2a+1)w(x)>a+1-\varepsilon>a>u(x) \qquad (x\in\partial W\cap\Omega)$$

and $w \in \mathcal{H}(\omega \backslash F)$, the function ν_1 is superharmonic on $V \backslash F$. Since

$$a+1-(2a+1)w(x) = -a < u(x) \qquad (x \in \partial F \cap \Omega),$$

the function ν_1 is equal to a+1-(2a+1)w(x) on an open set which contains F. Hence the function ν defined by $\nu = \nu_1 + (2a+1)w$ is bounded and superharmonic on $\omega \cap (V \cup W)$. Further, $u \leq \nu < u + \varepsilon$ on E. Finally, if u is continuous, then the above construction clearly results in ν also being continuous.

2.3. In this section we establish variants of Lemmas 3 and 4 which relate to condition (c)(ii) of Theorem 1. Suppose that condition (c)(ii) of Theorem 1 holds, let $y \in E$ (we dismiss the trivial case where $E = \emptyset$) and $K_0 = \{y\}$. Further, let $(K_m)_{m\geq 1}$ be a sequence of smoothly bounded compact subsets of Ω such that $K_m \subset K_{m+1}^0$ and $\widehat{K}_m = K_m$ for each m in $\{0, 1, \ldots, \}$ and such that $\bigcup_m K_m = \Omega$. By deleting some members of $(K_m)_{m\geq 1}$ we can arrange, in view of condition (c)(ii), that $\Omega \setminus \widetilde{E}$ and $\Omega \setminus (\widetilde{E} \cup K_m)^{\sim}$ are thin at the same points of $E \setminus K_{m+1}^0$, for each m.

Lemma 5. Suppose that condition (c)(ii) of Theorem 1 holds and let (K_m) be as described above. Further, let $l \in \mathbb{N}$, let

(3)
$$U_l = (\widetilde{E} \cup K_l)^{\sim} \setminus ((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2}),$$

and let F be a relatively closed subset of Ω such that $F \subseteq U_l$ and F is nonthin at each of its points. Then, for each positive number ε , there is a nonnegative continuous superharmonic function w, on an open set ω which contains $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega)$, such that $w \in \mathcal{H}(\omega \backslash F)$ and w = 1 on F and $w \leq \varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)$.

In proving Lemma 5 we may assume that $F \neq \emptyset$, for otherwise we can choose w to be the zero function. Let $\Omega_0 = \Omega \backslash F$. We again use \widehat{R}_s^A to denote the regularized reduced function of a nonnegative superharmonic function s on Ω_0 relative to a subset A of Ω_0 .

Let $\varepsilon \in (0,1)$ and

$$L(1,k) = \{ x \in \Omega \backslash K_{l+1}^0 : \operatorname{dist}(x, (\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l) \ge k^{-1} \} \qquad (k \in \mathbb{N})$$

It follows from the construction of the sequence (K_m) that $\Omega \setminus ((\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l)$ and $\Omega \setminus \widetilde{E}$ are thin at the same points of $E \setminus K_{l+1}^0$. Hence, by the smoothness of ∂K_{l+2} , the sets $\Omega \setminus ((\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l)$ and $\Omega \setminus \widetilde{E}$ are thin at the same points of $\partial U_l \cap \Omega$. Let

$$s_1(x) = \widehat{R}_1^{\Omega \setminus [(\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l \cup K_{l+1}^0]}(x) \qquad (x \in \Omega_0)$$

and

$$V_1 = \{ x \in U_l \backslash F : s_1(x) < 1 - \varepsilon/2 \} \cup F.$$

Similarly we define

$$L(m,k) = \{x \in \Omega \setminus K_{l+m}^0 : \operatorname{dist}(x, (\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l) \ge k^{-1}\} \qquad (m \ge 2; k \in \mathbb{N}),$$

$$s_m(x) = \widehat{R}_1^{\Omega \setminus [(\widetilde{E} \cup K_{l-1})^{\sim} \cup \overline{U}_l \cup K_{l+m}^0]}(x) \qquad (x \in \Omega_0),$$

and

$$V_m = \{x \in U_l \setminus (K_{l+m+1} \cup F) : s_m(x) < 1 - \varepsilon/2\} \cup (F \setminus K_{l+m+1}).$$

Let

$$V = \bigcup_{m=1}^{\infty} V_m.$$

We now argue as in the proof of Lemma 3 (we appeal to Lemma 1 in place of Lemma 2) to see that V is an open set which contains F and which satisfies $\overline{V} \cap \Omega \subseteq U_l$. Since

$$\widehat{R}_1^{L(1,k)}(x) \uparrow s_1(x) \qquad (x \in \Omega_0; k \to \infty),$$

we can choose k_1 in \mathbb{N} such that

(4)
$$\widehat{R}_1^{L(1,k_1)}(x) \ge 1 - \varepsilon \qquad (x \in \partial V \cap K_{l+4}).$$

Similarly, if $m \geq 2$, we choose k_m in \mathbb{N} such that

(5)
$$\widehat{R}_1^{L(m,k_m)}(x) \ge 1 - \varepsilon \qquad (x \in \partial V \cap (K_{l+m+3} \setminus K_{l+m+2}^0)).$$

Now let

$$L = \bigcup_{m=1}^{\infty} L(m, k_m),$$

let $\omega = \Omega \backslash L$ and let

$$w(x) = \begin{cases} H_{\chi_{\partial F \cap \Omega}}^{\Omega \setminus (F \cup L)}(x) & (x \in \Omega \setminus (F \cup L)), \\ 1 & (x \in F). \end{cases}$$

Thus ω is an open set which contains $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega)$, and w is a nonnegative continuous superharmonic function on ω . Clearly $w \in \mathcal{H}(\omega \setminus F)$. Since $w \leq 1 - \widehat{R}_1^L$ on $\Omega \setminus (F \cup L)$, it follows from (4) and (5) that $w \leq \varepsilon$ on $\partial V \cap \Omega$. Hence, by the maximum principle, we see that $w \leq \varepsilon$ on $\omega \setminus V$ and so on $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)$.

This completes the proof of Lemma 5.

Lemma 5 will now be used to prove the following.

Lemma 6. Suppose that condition (c)(ii) of Theorem 1 holds, let (K_m) be as described at the beginning of §2.3, let $l \in \mathbb{N}$ and let U_l be as in (3). If u is a bounded member of $S((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2})$, and if $\varepsilon > 0$, then there exists a bounded member ν of $S((\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega))$ such that $|\nu - u| < \varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)$. Further, if u is continuous, then it can be arranged that ν is also continuous.

To prove this, let u be a bounded member of $\mathcal{S}((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2})$ and let $\varepsilon \in (0,1)$. Then there is an open set V such that $(\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2} \subseteq V$ and $u \in \mathcal{S}(V)$, and a positive number a such that |u| < a on V. Next, let F be a relatively closed subset of Ω such that $F \subset U_l$ and F is nonthin at each of its points, and such that $U_l \subseteq V \cup F^0$. By Lemma 5 there is a nonnegative continuous superharmonic function w, on an open set ω which contains $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega)$, such that $w \in \mathcal{H}(\omega \setminus F)$ and w = 1 on F and $w < \varepsilon/(2a+1)$ on $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)$. Let

$$\nu_1(x) = \begin{cases} u(x) & (x \in V \setminus U_l), \\ \min\{u(x), a+1 - (2a+1)w(x)\} & (x \in U_l \setminus F), \\ -a & (x \in F). \end{cases}$$

As in the proof of Lemma 4, the function ν_1 is superharmonic on $V \setminus F$, and the function ν defined by $\nu = \nu_1 + (2a+1)w$ is bounded and superharmonic on $\omega \cap (V \cup U_l)$. Further,

$$u(x) \le \nu(x) < u(x) + \varepsilon$$
 $(x \in (\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)).$

Since $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega) \subset \omega \cap (V \cup U_l)$, this completes the proof of Lemma 6. (It is clear that, if u is continuous, then so also is ν .)

2.4. It will now be shown that (c) implies (b) in Theorem 1. Suppose that (c) holds, let u be a bounded function in $\mathcal{S}(E)$ and let $\varepsilon > 0$. In view of Lemma 4 there is a bounded function u_0 in $\mathcal{S}(\widetilde{E})$ such that $|u_0 - u| < 2^{-1}\varepsilon$ on \widetilde{E} . Let $\varphi_n : [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$ be the function defined by $\varphi_2(t) = \log(1/t)$ or $\varphi_n(t) = t^{2-n}$ if $n \geq 3$. (We interpret $\varphi_n(0)$ as $+\infty$ in either case.) Also, let (K_l) be the sequence of compact subsets of Ω described at the beginning of §2.3, and let U_l be as in (3). Then u_0 is a bounded member of $\mathcal{S}((\widetilde{E} \cup K_0)^{\sim})$, since $K_0 = \{y\} \subseteq E$.

We proceed inductively as follows. Suppose that we have a bounded superharmonic function u_{l-1} on an open set ω_{l-1} which contains $(\widetilde{E} \cup K_{l-1})^{\sim}$, where $l \in \mathbb{N}$. It follows (see [8, Lemma 2] or [9, Lemma 6.2]) that there exist ν_{l-1} in $\mathcal{S}(\mathbb{R}^n)$, points x_1, \ldots, x_m in $\mathbb{R}^n \setminus \omega_{l-1}$ and a nonnegative constant c such that

$$u_{l-1}(x) = \nu_{l-1}(x) - c \sum_{j=1}^{m} \varphi_n(|x - x_j|)$$

on some open set which contains the compact set $K_{l+3} \cap (\widetilde{E} \cup K_{l-1})^{\sim}$. Thus u_{l-1} can be redefined off the set $(\widetilde{E} \cup K_{l-1})^{\sim}$ so that it is superharmonic (and bounded above) on an open set that contains $(\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2}$, apart from finitely many Newtonian (or logarithmic) singularities in $K_{l+2} \setminus (\widetilde{E} \cup K_{l-1})^{\sim}$. Each of these singularities can be joined to \mathcal{A} by a continuous path lying in $\Omega \setminus (\widetilde{E} \cup K_{l-1})^{\sim}$. Hence, by a simple pole-pushing argument (see, for example, [9, §1.6]), there is a bounded member w_{l-1} of $\mathcal{S}((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2})$ such that $|w_{l-1} - u_{l-1}| < 2^{-l-3}\varepsilon$ on $\widetilde{E} \cup K_{l-1}$. It follows from Lemma 6 that there is a bounded member s_{l-1} of $\mathcal{S}((\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega))$ such that $|s_{l-1} - u_{l-1}| < 2^{-l-2}\varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim}$. Finally, as before, we may redefine s_{l-1} off the set $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega)$ so that it is superharmonic on an open set which contains $(\widetilde{E} \cup K_{l-1})^{\sim}$, apart from finitely many Newtonian (or logarithmic) singularities in $K_{l+2} \setminus (\widetilde{E} \cup K_{l-1})^{\sim}$. Each of these singularities can be joined to \mathcal{A} by a continuous path lying in $\Omega \setminus (\widetilde{E} \cup K_{l-1})^{\sim}$, and so we can obtain a bounded member u_l of $\mathcal{S}((\widetilde{E} \cup K_l)^{\sim})$ such that $u_{l-1} \leq u_l < u_{l-1} + 2^{-l-1}\varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim}$.

Since $\bigcup_l K_l = \Omega$, the sequence (u_l) , which is eventually defined and increasing on any given compact subset of Ω , converges on Ω to a function ν in $\mathcal{S}(\Omega)$ such that

$$|\nu - u| \le \sum_{l=1}^{\infty} (u_l - u_{l-1}) + |u_0 - u| < \varepsilon$$
 on E .

Thus condition (b) of Theorem 1 holds.

3. Proof of Theorem 1 (c)
$$\Rightarrow$$
 (a)

3.1. We begin with harmonic analogues of Lemmas 4 and 6.

Lemma 7. Suppose that $\Omega \backslash \widetilde{E}$ and $\Omega \backslash E$ are thin at the same points of E, let u be a bounded function in $\mathcal{H}(E)$ and let $\varepsilon > 0$. Then there exists a bounded function ν in $\mathcal{H}(\widetilde{E})$ such that $|\nu - u| < \varepsilon$ on E.

To see this, let u be a bounded function in $\mathcal{H}(E)$ and let $\varepsilon > 0$. By Lemma 4 there exist bounded functions ν_1 and ν_2 in $\mathcal{S}(\widetilde{E})$ such that $u < \nu_1 < u + \varepsilon$ and

 $-u < \nu_2 < -u + \varepsilon$ on E. Thus $-\nu_2 < \nu_1$ on E, and hence, by Theorem C, on some open set ω which contains \widetilde{E} . Let ν be the greatest harmonic minorant of ν_1 on ω . Then $-\nu_2 \le \nu \le \nu_1$ on ω . Hence ν is a bounded member of $\mathcal{H}(\widetilde{E})$ and $|\nu - u| < \varepsilon$ on E.

Lemma 8. Suppose that condition (c)(ii) of Theorem 1 holds, let (K_m) be as described at the beginning of §2.3, and let U_l be as in (3). If u is a bounded member of $\mathcal{H}((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2})$, where $l \in \mathbb{N}$, and if $\varepsilon > 0$, then there exists a bounded member ν of $\mathcal{H}((\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega))$ such that $|\nu - u| < \varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim} \cup (\partial U_l \cap \Omega)$.

This can be deduced from Lemma 6 in the same way that Lemma 7 was deduced from Lemma 4.

3.2. It will now be shown that (c) implies (a) in Theorem 1. Suppose that (c) holds, let u be a bounded function in $\mathcal{H}(E)$ and let $\varepsilon > 0$. In view of Lemma 7 there is a bounded function u_0 in $\mathcal{H}(\widetilde{E})$ such that $|u_0 - u| < 2^{-1}\varepsilon$ on \widetilde{E} . Let (K_l) be the sequence of compact subsets of Ω described at the beginning of §2.3 and let U_l be as in (3). Then u_0 is a bounded member of $\mathcal{H}((\widetilde{E} \cup K_0)^{\sim})$, since $K_0 = \{y\} \subseteq E$.

We proceed inductively as follows. Suppose that $l \in \mathbb{N}$ and that there is a bounded harmonic function u_{l-1} on an open set ω_{l-1} that contains $(\widetilde{E} \cup K_{l-1})^{\sim}$. It follows from a result of Gauthier, Goldstein and Ow (see [11] and [12], or [9, Theorem 3.5]) that there is a function ν_{l-1} , which is harmonic on Ω apart from isolated singularities in $\Omega \setminus (E \cup K_{l-1})^{\sim}$, and which satisfies $|\nu_{l-1} - u_{l-1}| < 2^{-l-4}\varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim}$. Only finitely many of the singularities lie in the compact set K_{l+2} , and these singularities can be joined to \mathcal{A} by a continuous path lying in $\Omega \setminus (\widetilde{E} \cup K_{l-1})^{\sim}$. A pole-pushing argument now yields a bounded member w_{l-1} of $\mathcal{H}((\widetilde{E} \cup K_{l-1})^{\sim} \cup K_{l+2})$ such that $|w_{l-1} - u_{l-1}| < 2^{-l-3}\varepsilon$ on $\widetilde{E} \cup K_{l-1}$. It follows from Lemma 8 that there is a bounded member s_{l-1} of $\mathcal{H}((\widetilde{E} \cup K_{l-1})^{\sim} \cup (\overline{U}_l \cap \Omega))$ such that $|s_{l-1} - u_{l-1}| < 2^{-l-2}\varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim}$. A further approximation of s_{l-1} by a harmonic function on Ω with isolated singularities, followed by pole pushing, yields u_l in $\mathcal{H}((\widetilde{E} \cup K_l)^{\sim})$ such that $|u_l - u_{l-1}| < 2^{-l-1}\varepsilon$ on $(\widetilde{E} \cup K_{l-1})^{\sim}$.

Since $\bigcup_l K_l = \Omega$, the sequence (u_l) converges locally uniformly on Ω to a function ν in $\mathcal{H}(\Omega)$ such that

$$|\nu - u| \le \sum_{l=1}^{\infty} |u_l - u_{l-1}| + |u_0 - u| < \varepsilon$$
 on E .

Thus condition (a) of Theorem 1 holds.

4. Proof of Theorem 1 (a)
$$\Rightarrow$$
 (c) and (b) \Rightarrow (c)

4.1. The following lemma simultaneously shows that condition (c)(i) is implied by (a) and by (b) in Theorem 1.

Lemma 9. Suppose that, for each bounded u in $\mathcal{H}(E)$ and each positive number ε , there exists ν in $\mathcal{S}(\widetilde{E})$ such that $|\nu - u| < \varepsilon$. Then $\Omega \backslash \widetilde{E}$ and $\Omega \backslash E$ are thin at the same points of E.

To prove this we first note that, if Ω does not have a Green function (so n=2) and $\widetilde{E}=\Omega$, then $E=\Omega$. To see this, suppose otherwise, let $\varepsilon>0$ and let $u(x)=\log(|x-y|/|x-z|)$, where y and z are distinct points of $\widetilde{E}\backslash E$. Then u is a bounded member of $\mathcal{H}(E)$ and so, by hypothesis, there exists ν_{ε} in $\mathcal{S}(\Omega)$ such that

 $|\nu_{\varepsilon} - u| < \varepsilon$ on E. Hence, by Theorem C, ν_{ε} is a lower bounded superharmonic function on Ω , and so is constant. Since ε can be arbitrarily small, this forces u to be constant on E and so leads to the contradictory conclusion that E is contained in a straight line or circle. We now discount the trivial case where $E = \Omega$. We define $\Omega_0 = \Omega$ if Ω has a Green function, and $\Omega_0 = \mathbb{R}^2 \backslash B$ otherwise, where B is a closed ball in $\Omega \backslash \widetilde{E}$. Thus, in either case, Ω_0 has a Green function $G(\cdot, \cdot)$. All reduced functions below are with respect to superharmonic functions on Ω_0 .

We next claim that, if U is a component of $\widetilde{E}\backslash E$, then each point of $\partial U\cap\Omega$ is regular for the Dirichlet problem on U. To see this, let $\varepsilon>0$, let $y\in U$ and u(x)=-G(x,y). Then there exists ν in $\mathcal{S}(\widetilde{E})$ such that $|\nu-u|<\varepsilon$ on E and so, by Theorem C, $\nu-u+\varepsilon$ is a positive member of $\mathcal{S}(\widetilde{E})$. Clearly $\nu-u+\varepsilon\geq G_U(y,\cdot)$, where $G_U(y,\cdot)$ is the Green function for U with pole y. Hence

$$\limsup_{x \to z} G_U(y, x) \le 2\varepsilon \qquad (z \in \partial U \cap \Omega).$$

The claim now follows in view of the arbitrary nature of ε .

Suppose that $\Omega \setminus E$ is nonthin at a point z of E, and let δ be a positive number such that $\overline{B(z,\delta)} \subset \Omega_0 \cap \Omega$, where $B(z,\delta)$ denotes the open ball of centre z and radius δ . Further, let $0 < \rho < \delta$, and let K be a compact subset of $B(z,\rho) \setminus E$ such that

$$(6) u_{\rho}(z) \ge 1/2,$$

where $u_{\rho} = \widehat{R}_1^K$.

Let $\varepsilon > 0$. Since $-u_{\rho}$ is a bounded member of $\mathcal{H}(E)$, we know by hypothesis that there exists ν_{ε} in $\mathcal{S}(\widetilde{E})$ such that $|\nu_{\varepsilon} + u_{\rho}| < \varepsilon$ on E. By lower semicontinuity $\nu_{\varepsilon} + u_{\rho} > -\varepsilon$ on some open set which contains E, and hence contains $\partial \widetilde{E} \cap \Omega$. We define V to be the union of $B(z, \delta)$ with $\widetilde{E} \setminus E$. Then $\partial V \cap \Omega \subseteq E \cup \partial B(z, \delta)$. Also, $\partial^{\infty}V \cap \partial^{\infty}\Omega$ has zero harmonic measure for V. (For example, this can be seen from Theorem C if we define s to be the harmonic measure in V of the set $\partial^{\infty}V \cap \partial^{\infty}\Omega$, since all points of $\partial V \cap (\Omega \setminus \overline{B(z, \delta)})$ are regular.) Thus, if we define

$$V_m = \{ x \in V : \operatorname{dist}(x, \widetilde{E}) < m^{-1} \} \qquad (m \in \mathbb{N}),$$

then, for large values of m,

$$-\widehat{R}_{u_\rho}^{\Omega_0\backslash V_m} - \nu_\varepsilon = H_{-u_\rho}^{V_m} - \nu_\varepsilon \leq H_{-u_\rho-\nu_\varepsilon}^{V_m} \leq \varepsilon \quad \text{on } E\cap B(z,\delta).$$

Hence

$$u_{\rho} - \widehat{R}_{u_{\rho}}^{\Omega_0 \setminus V_m} < 2\varepsilon \quad \text{on } E \cap B(z, \delta).$$

If we let $m \to \infty$ and observe that ε can be arbitrarily small, then we see that

(7)
$$\widehat{R}_{u_{\rho}}^{\Omega_{0}\setminus(\widetilde{E}\cap V)}(z) = u_{\rho}(z).$$

Let $w_{\rho} = R_1^{B(z,\rho)}$. Then $w_{\rho} \geq u_{\rho}$ on Ω_0 , so it follows from (6) and (7) that

$$\widehat{R}_{w_{\rho}}^{\Omega_{0} \setminus (\widetilde{E} \cap B(z,\delta))}(z) \geq \widehat{R}_{u_{\rho}}^{\Omega_{0} \setminus (\widetilde{E} \cap V)}(z) = u_{\rho}(z) \geq \frac{1}{2}.$$

Since ρ can be arbitrarily small, we conclude (see [6, 1.XI.3(a")]) that $\Omega_0 \setminus (\widetilde{E} \cap B(z, \delta))$, and hence $\Omega \setminus \widetilde{E}$, is nonthin at z.

This establishes Lemma 9.

4.2. The following lemma simultaneously shows that condition (c)(ii) is implied by (a) and by (b) in Theorem 1.

Lemma 10. Suppose that, for each bounded function u in $\mathcal{H}(E)$ and each positive number ε , there exists ν in $\mathcal{S}(\Omega)$ such that $|\nu - u| < \varepsilon$ on E. Then condition (c)(ii) of Theorem 1 holds.

To prove this, we suppose that condition (c)(ii) fails to hold. Thus there is a compact subset K of Ω and a sequence (z_m) of distinct points of $E \setminus K$ such that (z_m) converges to a point of $\partial^{\infty}\Omega$, and such that

- (I) $\Omega \setminus \widetilde{E}$ is nonthin at each point z_m ,
- (II) $\Omega \setminus (\widetilde{E} \cup K)^{\sim}$ is thin at each point z_m .

If Ω does not have a Green function and $(\widetilde{E} \cup K)^{\sim} = \Omega$, then $\widetilde{E} = \Omega$ and so $E = \Omega$ (see §4.1). We now dismiss the trivial case where $E = \Omega$. We define $\Omega_0 = \Omega$ if Ω has a Green function, and $\Omega_0 = \mathbb{R}^2 \setminus B$ otherwise, where B is a closed ball in $\Omega \setminus (\widetilde{E} \cup K)^{\sim}$. All reduced functions below are with respect to superharmonic functions on Ω_0 . Let $V = (\widetilde{E} \cup K)^{\sim} \setminus (\widetilde{E} \cup K)$. We recall that each point of $\partial^{\infty} V \cap \partial^{\infty} \Omega$ is regular for the Dirichlet problem on V. (See the remark preceding Theorem C.)

For each m in \mathbb{N} we choose a positive number δ_m in $(0, m^{-1})$ such that the balls $\overline{B(z_m, \delta_m)}$ are pairwise disjoint and are contained in $(\Omega_0 \cap \Omega) \backslash K$. Further, the numbers δ_m should be small enough so that, if $W = V \cup (\bigcup_m B(z_m, \delta_m))$, then each point of $\partial^{\infty}W \cap \partial^{\infty}\Omega$ is regular for the Dirichlet problem on W. (This is possible in view of Wiener's criterion and the corresponding property of V.) Next we choose η_m in $(0, \delta_m)$ sufficiently small so that the functions w_m defined by

$$w_m = R_1^{B(z_m, \eta_m)}$$

satisfy $w_m < 2^{-m}$ on $\Omega_0 \backslash B(z_m, \delta_m)$. In view of property (II) above we can also arrange, by reducing the value of η_m , if necessary, that

(8)
$$\widehat{R}_{w_m}^{\Omega_0 \setminus [B(z_m, \delta_m) \cap (\widetilde{E} \cup K)^{\sim}]}(z_m) < \frac{1}{4}$$

(see [6, 1.XI.3(a'')]).

In view of property (I) above, we can choose (for each m) a compact subset L_m of $B(z_m, \eta_m) \backslash \widetilde{E}$ such that

$$(9) u_m(z_m) > 3/4,$$

where

$$u_m = \widehat{R}_{w_m}^{L_m}.$$

Clearly $u_m \in \mathcal{H}(\Omega_0 \backslash L_m)$ for each m. Since $u_m \leq w_m < 2^{-m}$ on $\Omega_0 \backslash B(z_m, \delta_m)$, we see that the series $\sum_m u_m$ converges locally uniformly on Ω to a function u such that $0 \leq u < 2$ on Ω and $u \in \mathcal{H}(\widetilde{E} \cup K)$. By hypothesis there exists ν in $\mathcal{S}(\Omega)$ such that $|\nu + u| < 1/6$ on E. By Theorem C and lower semicontinuity $\nu + u > -1/6$ on an open set U which contains \widetilde{E} . Further, we may arrange (by truncation) that ν is bounded above on Ω , so there is a positive constant a such that $|\nu + u| < a$ on the compact set K. Let $f = \chi_K$. Then, in view of our choice of (δ_m) , we see that $H_f^W(x) \to 0$ as $x \to A$.

We now choose m' large enough such that $H_f^W < (6a)^{-1}$ on $B(z_{m'}, \delta_{m'})$, and define $V' = V \cup B(z_{m'}, \delta_{m'})$ and

$$V_k = \{ x \in V' : \operatorname{dist}(x, (\widetilde{E} \cup K)^{\sim}) < k^{-1} \} \qquad (k \in \mathbb{N}).$$

We know (cf. §4.1) that $\partial^{\infty} V_k \cap \partial^{\infty} \Omega$ has zero harmonic measure for each component of V_k . Hence, for large values of k, we see that

$$-\widehat{R}_{u}^{\Omega_{0} \setminus V_{k}}(x) - \nu(x) \leq H_{-u-\nu}^{V_{k}}(x) \leq \frac{1}{6} + aH_{f}^{V_{k}}(x)$$

$$\leq \frac{1}{6} + aH_{f}^{W}(x) < \frac{1}{3} \qquad (x \in \widetilde{E} \cap B(z_{m'}, \delta_{m'})),$$

and so

$$u(x) - \widehat{R}_u^{\Omega_0 \setminus V_k}(x) < \frac{1}{2} \qquad (x \in E \cap B(z_{m'}, \delta_{m'})).$$

Thus, if we let $k \to \infty$, we obtain

(10)
$$u(z_{m'}) - \widehat{R}_u^{\Omega_0 \setminus [V' \cap (\widetilde{E} \cup K)^{\sim}]}(z_{m'}) \le \frac{1}{2}.$$

However, since

$$\widehat{R}_{u}^{A} = \sum_{m} \widehat{R}_{u_{m}}^{A}$$

for any set A (see [6, 1.VI.3(f)]), we obtain

$$u(z_{m'}) - \widehat{R}_{u}^{\Omega_{0} \setminus [V' \cap (\widetilde{E} \cup K)^{\sim}]}(z_{m'}) \ge u_{m'}(z_{m'}) - \widehat{R}_{u_{m'}}^{\Omega_{0} \setminus [V' \cap (\widetilde{E} \cup K)^{\sim}]}(z_{m'})$$

$$> \frac{3}{4} - \frac{1}{4} = \frac{1}{2},$$

in view of (8) and (9) and the fact that $u_{m'} \leq w_{m'}$. This contradicts (10), so condition (c)(ii) must hold.

This completes the proof of Theorem 1.

5. Proof of Theorem 2 and Corollary 1

5.1. Theorem 2 follows immediately from Theorem 1 and the following result due to Labrèche and Bensouda and Gauthier (see [14], [10], [4], or see [9, Theorems 3.17 and 6.11]). In this connection we observe that the proof that (c) implies (b) in Theorem 1 (see §2) yields a continuous approximating function ν if the original function u is continuous.

Theorem D. Let Ω be an open set in \mathbb{R}^n and E be a relatively closed subset of Ω . The following are equivalent:

- (a) for each u in $C(E) \cap \mathcal{H}(E^0)$ and each positive number ε there exists ν in $\mathcal{H}(E)$ such that $|\nu u| < \varepsilon$ on E;
- (b) for each u in $C(E) \cap \mathcal{S}(E^0)$ and each positive number ε there exists a continuous function ν in $\mathcal{S}(E)$ such that $|\nu u| < \varepsilon$ on E;
- (c) $\Omega \setminus E$ and $\Omega \setminus E^0$ are thin at the same points of E.

5.2. We will now prove Corollary 1. Let n = 2. Clearly (a) implies (b).

Suppose that (b) holds. It follows from Theorem 1 and Lemma 2 that $\partial E \cap \Omega = \partial \widetilde{E} \cap \Omega$, and from the definition of \widetilde{E} that $\partial^{\infty} E \cap \partial^{\infty} \Omega = \partial^{\infty} \widetilde{E} \cap \partial^{\infty} \Omega$. Hence $\partial E = \partial \widetilde{E}$. Let K be a compact subset of Ω . Then, by Theorem 1, there is a compact subset L of Ω such that $\Omega \setminus \widetilde{E}$ and $\Omega \setminus (\widetilde{E} \cup K)^{\sim}$ are thin at the same points of $E \setminus L$. We may assume that $K \subseteq L$. It follows from Lemma 1 that $\partial \widetilde{E} \cap (\Omega \setminus L) = \partial((\widetilde{E} \cup K)^{\sim}) \cap (\Omega \setminus L)$. As before we deduce that $\partial \widetilde{E} \setminus L = \partial((\widetilde{E} \cup K)^{\sim}) \setminus L$. Thus condition (c) holds.

Finally, suppose that condition (c) holds, and let z be a point of E at which $\Omega \backslash \widetilde{E}$ is thin. Then, since n=2, there are arbitrarily small circles centered at z which are contained in \widetilde{E} . Hence $z \in (\widetilde{E})^0$. By condition (c)(i) it follows that $z \notin \partial E$, so $z \in E^0$ and $\Omega \backslash E^0$ is certainly thin at z. This shows that condition (c)(i) of Theorem 2 holds. Let K be a compact subset of Ω . Then, by condition (c)(ii) there is a compact subset L of Ω such that $\partial \widetilde{E} \backslash L = \partial ((\widetilde{E} \cup K)^{\sim}) \backslash L$. Let z be a point of $E \backslash L$ at which $\Omega \backslash (\widetilde{E} \cup K)^{\sim})$ is thin. Then, as in the previous paragraph, we see that $z \in ((\widetilde{E} \cup K)^{\sim})^0$. Thus $z \notin \partial \widetilde{E}$ and so $z \in (\widetilde{E})^0$. It follows that $\Omega \backslash \widetilde{E}$ is also thin at z. Thus condition (c)(ii) of Theorem 2 holds. We can now apply Theorem 2 to see that condition (a) of Corollary 1 holds.

This completes the derivation of Corollary 1 from Theorems 1 and 2.

6. A refinement of Theorem 1

A further equivalent condition is added to Theorem 1 by the following result. It yields better-than-uniform approximation near points of $\partial^{\infty} E \cap \partial^{\infty} \Omega$ which are regular for the Dirichlet problem on Ω .

Theorem 3. Let Ω be a connected open set with Green function $G_{\Omega}(\cdot, \cdot)$, and let $y \in \Omega$. If condition (c) of Theorem 1 holds, then for each bounded function u in $\mathcal{H}(E)$ and each positive number ε there exists ν in $\mathcal{H}(\Omega)$ such that

$$|\nu(x) - u(x)| < \varepsilon \min\{1, G_{\Omega}(y, x)\}$$
 $(x \in E)$.

The proof of this result is essentially the same as the argument given in $\S\S2$, 3. For example, the right-hand side of (1) and (2) should now be replaced by

$$1 - \varepsilon \min\{1, G_{\Omega}(y, x)\},\$$

so that the function w of Lemma 3 satisfies

$$w(x) \le \varepsilon \min\{1, G_{\Omega}(y, x)\}$$
 $(x \in E)$.

This allows us to arrange that the function ν of Lemma 4 satisfies

$$|\nu(x) - u(x)| < \varepsilon \min\{1, G_{\Omega}(y, x)\}$$
 $(x \in E)$

The appropriate pole-pushing estimates and approximation results can be found in [3] or [9, Chapter 3].

A similar refinement of Theorem 2 also holds.

References

- N. U. Arakelyan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273–286; English transl. in Amer. Math. Soc. Transl. (2) 122 (1984), 85–97.
- Approximation complexe et propriétés des fonctions analytiques, Actes Congrès Internat. Math., vol. 2, 1970, pp. 595–600.

- D. H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (3) 68 (1994), 112–126. MR 94i:31005
- C. Bensouda and P. M. Gauthier, Superharmonic approximation on the closed sets, J. Contemp. Math. Anal. 29 (1994), 11–22.
- Chen Huaihui and P. M. Gauthier, A maximum principle for subharmonic and plurisubharmonic functions, Canad. J. Math. 35 (1992), 34–39. MR 93a:31013
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York, 1984. MR 85k:31001
- B. Fuglede, Asymptotic paths for subharmonic functions, Math. Ann. 213 (1975), 261–274.
 MR 52:775
- S. J. Gardiner, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble) 44 (1994), 65–91. MR 95a:31006
- 9. _____, Harmonic approximation, LMS Lecture Notes 221, Cambridge Univ. Press, 1995.
- P. M. Gauthier, Approximation by (pluri)subharmonic functions: fusion and localization, Canad. J. Math. 44 (1992), 941–950. MR 93i:32018
- P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 169–183. MR 81m:30033
- ______, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71–82. MR 84j:31009
- 13. L. L. Helms, Introduction to potential theory, Krieger, New York, 1975. MR 57:659
- M. Labrèche, De l'approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.
- A. A. Nersesyan, Approximation by harmonic functions on closed subsets of planar domains, Soviet J. Contemp. Math. Anal. 25 (1990), 58–66. MR 92e:41013
- A. Stray, On uniform and asymptotic approximation, Math. Ann. 234 (1978), 61–68. MR
 57:9980
- ______, Vitushkin's method and some problems in approximation theory, Aspects of Contemporary Complex Analysis (D. A. Brannan and J. G. Clunie, eds.), Academic Press, London, 1980, pp. 351–365. MR 82g:30070

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE DUBLIN, DUBLIN 4, IRELAND